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Spatial Scan Statistics

Sampled Philadelphia crime data

I Theft

I All crimes in red and blue



Spatial Scan Statistics

I Data set X ⊆ R2 and for each x ∈ X
I m(x) is a measured value. m(x) = 1 for theft otherwise 0.
I b(x) is a baseline value. b(x) = 1 for all points.

I Sets defined by regions A ⊂ 2X .
I Disks
I Rectangles

I Find region that maximizes function φ.



Spatial Scan Statistics

Want to find regions corresponding to:

I Disease outbreaks

I High regions of crime

I Environmental causes for cancer

I Wildfires, earthquakes, and other natural disasters.



Anomaly Detection Pipeline

I Formulate a model of the data and choose a corresponding
measure φ to score the likelihood of an anomaly in a region.

I

I Assess whether the score φ(A) indicates A is significant.
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Existing Approaches

For set |X | = m.
I SatScan [?] [?]

I Commonly used.
I Scans all disks.
I O(m3 log(m)) runtime.

I Agarwal [?]
I Approximation using linear functions.
I Faster and works on rectangles.
I O( 1

εm
2 log2(m)) runtime.



Existing Approaches

For set |X | = m.
I Neill [?]

I Aggregates to grid.
I Can miss anomalies if dense clusters of points exist.
I Performance depends on data.
I Best Case O(g2 log(g)), Worst Case O(g4).



Data is usually a Sample

Methods assume entire data set is available, but...

I Only reported crimes.

I Census samples population.

I 1% feed of geolocated tweets.

How much error does sampling introduce in anomaly detection?



Algorithms



Sample Then Scan

Idea: Run SatScan on Sample.



Sample Then Scan

Problem: Far too many combinatorial regions.
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Sample Then Scan

Compute φ using dense sample.



Enumerating Disks

I Split points along half space defined by points p1, p2 ∈ N
(sparse sample)

I Sort S (dense sample) by the order points fall into a disk
passing through p1 and p2.

I Repeat for all p1 and p2.

I |N| = n, |S | = s

I O(n2s log(n))
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Enumerating Rectangles

I Use N to define a grid of size n2

I Distribute points in S into grid cells

I Enumerate over all lower and upper corners.

I O(n4 + s log(n))



Can this Work?

If this works then we help scalability and the sampling problem.

I How well does this method work in practice?

I Can we prove guarantees?



How well does this work?



Experimental Setup

I 5 million tweets.
I Algorithm ran with:

I |N| = n sparse sample.
I |S | = s dense sample.

I Planted region containing:
I r fraction of points.
I p measured rate outside.
I q measured rate inside.

I Jaccard Distance

d(A,B) = 1− |A ∩ B

|A ∪ B|



Stability

Defaults

I Outside rate
p = .04

I Inside rate
q = .08

I Region size
r = .05

I Sparse sample
n = 100

I Large sample
s = 4000
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Running Time

Defaults

I Outside rate
p = .04

I Inside rate
q = .08

I Region size
r = .05

I Sparse sample
n = 100

I Large sample
s = 4000

alldisks: O(n2s log(n))
allrect: O(n4 + s log(n))



Running Time

Method compares favorably with existing algorithms when using
similar error.

Unlike griding our methods have guarantees since sample N adapts
to data.



Experiment Summary

I Reasonable sample sizes.

I Finds region with high overlap.

I Stable results till threshold.

I Very fast.



Why does this work?



Lipschitz Bounds

Need approximation on the Kulldorff Scan Statistic

φX (A) = mA ln
mA

bA
+ (1−mA) ln

1−mA

1− bA
.

If:

I ερ
2 ≥ |mA − m̂A|

I ερ
2 ≥ |bA − b̂A|

I ρ-boundary conditions.

Then
|φ(mA, bA)− φ(m̂A, b̂A)| ≤ ε.
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Range Spaces

I Data set X ⊆ R2.

I Set of ranges A ⊂ 2X .
I Range space R = (X ,A).

I |A| = O(|X |3) for disks.
I |A| = O(|X |4) for rectangles.



ε-Samples

Given a range space (X ,A) with constant VC dimension then for
∀A ∈ A a random sample S ⊆ X with constant probability will be
an:

I ε-Sample
I if |S | = O( 1

ε2 )

I then
∣∣∣ |X∩A|

|X | −
|S∩A|
|S|

∣∣∣ ≤ ε

I ε-Net
I if |S | = O( 1

ε log( 1
ε ))

I and if |X∩A|
|X | ≥ ε then |S∩A|

|S| ≥ 1



Just Sample Approach

Idea: Sample full data X and run SatScan on sample. For function
φ with constant probability need:

I |S | = O
(

1
(ρε)2

)
for additive error bound on φ.

I Disks enumerated in O

((
1
ερ

)6
log 1

ερ

)
I Rectangles enumerated in O

((
1
ερ

)8
)

Not good.
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Using Nets

Consider range space (X ,A) then random samples of X :

I N of size n = O(1ε log 1
ε ) and

I S of size s = O( 1
ε2

log 1
δ ).

Then with constant probability for ∀A ∈ A then
∃A′ ∈ {A ∩ N|A ∈ A} such that∣∣∣∣ |A ∩ X |

|X |
− |ψ(A′) ∩ S

|S |

∣∣∣∣ ≤ ε
Note: Some restrictions beyond VC dimension required that rectangles and

disks satisfy. See paper for details on ψ.



Theory Summary

Combine sample bound with Lipschitz bound.

I |N| = O
(

1
ερ log 1

ερ

)
I |S | = O

(
1

(ερ)2

)
.

Runtime with constant probability:

I Disks: O
(
|X |+ 1

(ερ)4
log3

(
1
ερ

))
I Rectangles: O

(
|X |+

(
1
ερ log 1

ερ

)4
)

Attain error bound |φ− φN,S | ≤ ε.



Summary

C++ implementation with Python wrapper is available at:
https://github.com/michaelmathen/SampleScan

Theory
Sample sizes:

I |N| = O
(

1
ερ

log 1
ερ

)
I |S | = O

(
1

(ερ)2

)
.

Runtime with constant probability:

I Disks: O
(
|X |+ 1

(ερ)4
log3

(
1
ερ

))
I Rectangles:

O

(
|X |+

(
1
ερ

log 1
ερ

)4
)

Error bound |φ− φN,S | ≤ ε.

Experimental

Can be even faster
I Orthogonal to [?] approach.

I Can be combined with [?].



Questions

C++ implementation with Python wrapper is available at:
https://github.com/michaelmathen/SampleScan
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Experimental
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I Orthogonal to [?] approach.

I Can be combined with [?].



For Further Reading I



Linearization



Sample Range Approach

Symmetric Difference Range Space

I Consider a range space (X ,SA) where
SA = {A4A′|A,A′ ∈ A}.

I Has VC dimension bounded by ν log(ν).



ε-Net over Symmetric Difference

I Define a conforming geometric mapping ψ(A ∩ N) ⊂ R2 such
that

I ∀A ∈ A then ψ(A ∩ N) ∩ N = A ∩ N
I ψ(A) ∩ X ∈ A

Lemma
Given an ε-net N over (X ,SA), a geometric mapping ψ
conforming to A, then for any range A ∈ (X ,A), there exists a
range ψ(A′) ∩ X for A′ ∈ {N ∩ A| ∈ A} such that
|A4(ψ(A′) ∩ X )| ≤ ε|X |.



ε-Net over Symmetric Difference

Use mapping to find approximate count in S .

2ε ≥

∣∣∣∣∣ |A ∩ X |
|X |

−
|ψ(A′) ∩ X

|X |

∣∣∣∣∣ +
∣∣∣∣∣ |ψ(A′) ∩ X |

|X |
−
|ψ(A′) ∩ S

|S|

∣∣∣∣∣ ≥
∣∣∣∣∣ |A ∩ X |
|X |

−
|ψ(A′) ∩ S

|S|

∣∣∣∣∣



Scan Statistic

I Data set X ⊆ R
¯
2 and for each x ∈ X

I m(x) is a measured value.
I b(x) is a baseline value.

I For each region A ∈ A define

mX (A) =
∑

x∈A m(x)∑
x∈X m(x) , bX (A) =

∑
x∈A b(x)∑
x∈X b(x)

I Kulldorff Scan Statistic:

φX (A) = mX (A) ln
mX (A)

bX (A)
+ (1−mX (A)) ln

1−mX (A)

1− bX (A)
.

I Gaussian, Bernoulli, Gamma, etc versions also exist.



Matched Error Experiments


