Scalable Spatial Scan Statistics through Sampling

Michael Matheny Raghvendra Singh Liang Zhang Kaiqiang Wang Jeff M. Phillips

School of Computing University of Utah

ACM SigSpatial, 2016

Spatial Scan Statistics

Sampled Philadelphia crime data

- ► Theft
- ► All crimes in red and blue

Spatial Scan Statistics

- Data set $X \subseteq \mathbb{R}^2$ and for each $x \in X$
 - m(x) is a measured value. m(x) = 1 for theft otherwise 0.
 - b(x) is a baseline value. b(x) = 1 for all points.
- Sets defined by regions $\mathcal{A} \subset 2^X$.
 - Disks
 - Rectangles
- Find region that maximizes function ϕ .

< □ ▶ < 🗇 ▶

nac

Spatial Scan Statistics

Want to find regions corresponding to:

- Disease outbreaks
- ► High regions of crime
- Environmental causes for cancer
- ► Wildfires, earthquakes, and other natural disasters.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Formulate a model of the data and choose a corresponding measure φ to score the likelihood of an anomaly in a region.

► Formulate a model of the data and choose a corresponding measure φ to score the likelihood of an anomaly in a region.

• Scan the data set to find a region A which maximizes ϕ .

► Formulate a model of the data and choose a corresponding measure φ to score the likelihood of an anomaly in a region.

- Scan the data set to find a region A which maximizes ϕ .
- Assess whether the score $\phi(A)$ indicates A is significant.

- ► Formulate a model of the data and choose a corresponding measure φ to score the likelihood of an anomaly in a region.
- Scan the data set to find a region A which maximizes ϕ .

<ロ> <用> < 三> < 三> < 三> < 三</p>

• Assess whether the score $\phi(A)$ indicates A is significant.

Existing Approaches

- For set |X| = m.
 - ► SatScan [?] [?]
 - ► Commonly used.
 - ► Scans all disks.
 - $O(m^3 \log(m))$ runtime.
 - ► Agarwal [?]
 - Approximation using linear functions.
 - ► Faster and works on rectangles.
 - $O(\frac{1}{\varepsilon}m^2\log^2(m))$ runtime.

《日》 《圖》 《臣》 《臣》

Sac

Existing Approaches

- For set |X| = m.
 - ► Neill [?]
 - ► Aggregates to grid.
 - Can miss anomalies if dense clusters of points exist.
 - Performance depends on data.
 - Best Case $O(g^2 \log(g))$, Worst Case $O(g^4)$.

Jac.

Methods assume entire data set is available, but...

- Only reported crimes.
- Census samples population.
- ► 1% feed of geolocated tweets.

How much error does sampling introduce in anomaly detection?

Algorithms

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Idea: Run SatScan on Sample.

Problem: Far too many combinatorial regions.

Idea: Use smaller sample to induce regions.

 ${\rm Sparse} \ {\rm Sample}$

Idea: Use smaller sample to induce regions.

Compute ϕ using dense sample.

Compute ϕ using dense sample.

Compute ϕ using dense sample.

- ▶ Split points along half space defined by points p₁, p₂ ∈ N (sparse sample)
- Sort S (dense sample) by the order points fall into a disk passing through p₁ and p₂.

- ▶ Split points along half space defined by points p₁, p₂ ∈ N (sparse sample)
- Sort S (dense sample) by the order points fall into a disk passing through p₁ and p₂.

- ▶ Split points along half space defined by points p₁, p₂ ∈ N (sparse sample)
- Sort S (dense sample) by the order points fall into a disk passing through p₁ and p₂.

- ▶ Split points along half space defined by points p₁, p₂ ∈ N (sparse sample)
- Sort S (dense sample) by the order points fall into a disk passing through p₁ and p₂.

- ▶ Split points along half space defined by points p₁, p₂ ∈ N (sparse sample)
- Sort S (dense sample) by the order points fall into a disk passing through p₁ and p₂.
- Repeat for all p_1 and p_2 .
- ► |N| = n, |S| = s
- ► $O(n^2 s \log(n))$

Enumerating Rectangles

- Use N to define a grid of size n^2
- ► Distribute points in *S* into grid cells
- Enumerate over all lower and upper corners.
- $O(n^4 + s \log(n))$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Can this Work?

If this works then we help scalability and the sampling problem.

- How well does this method work in practice?
- ► Can we prove guarantees?

How well does this work?

<□> < @> < E> < E> E のQの

Experimental Setup

- ► 5 million tweets.
- Algorithm ran with:
 - |N| = n sparse sample.
 - |S| = s dense sample.
- Planted region containing:
 - r fraction of points.
 - p measured rate outside.
 - q measured rate inside.
- Jaccard Distance

$$d(A,B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Defaults

- Outside rate
 p = .04
- Inside rate q = .08
- Region size r = .05
- Sparse sample n = 100
- ► Large sample s = 4000

イロト イワト イヨト

- < ∃ →

∍

Sac

Defaults

- Outside rate
 p = .04
- Inside rate q = .08
- Region size r = .05
- Sparse sample n = 100
- ► Large sample s = 4000

 $\langle \Box \rangle$

< 🗇 ▷

 $\Xi \rightarrow$

-

∍

Defaults

- Outside rate
 p = .04
- Inside rate q = .08
- Region size r = .05
- Sparse sample n = 100
- ► Large sample s = 4000

500

∍

Defaults

- Outside rate
 p = .04
- Inside rate q = .08
- Region size r = .05
- Sparse sample n = 100
- Large sample
 s = 4000

 $\langle \Box \rangle$

P

990

∍

Defaults

- Outside rate
 p = .04
- Inside rate q = .08
- Region size r = .05
- Sparse sample n = 100
- Large sample
 s = 4000

∍

Sac

Defaults

- Outside rate p = .04
- Inside rate q = .08
- Region size r = .05
- Sparse sample n = 100
- Large sample
 s = 4000

 $\langle \Box \rangle$

P

ъ

∍

Running Time

Defaults

- Outside rate
 p = .04
- Inside rate q = .08
- Region size r = .05
- Sparse sample n = 100
- ► Large sample
 s = 4000
 alldisks: O(n²s log(n))

allrect: $O(n^4 + s \log(n))$

Running Time

Method compares favorably with existing algorithms when using similar error.

Unlike griding our methods have guarantees since sample N adapts to data.

∍

Da Cr

- ► Reasonable sample sizes.
- Finds region with high overlap.

《曰》 《聞》 《臣》 《臣》

- Stable results till threshold.
- Very fast.

Why does this work?

<ロ> < 四> < 回> < 三> < 三> < 三> < 三 < のへぐ

Lipschitz Bounds

If:

►

Need approximation on the Kulldorff Scan Statistic

《曰》 《圖》 《言》 《言》

If:

Need approximation on the Kulldorff Scan Statistic

《曰》 《圖》 《言》 《言》

Range Spaces

- Data set $X \subseteq \mathbb{R}^2$.
- Set of ranges $\mathcal{A} \subset 2^X$.
- Range space R = (X, A).
 - $|\mathcal{A}| = O(|X|^3)$ for disks.
 - $|\mathcal{A}| = O(|X|^4)$ for rectangles.

< 口 > < 何 >

Sac

Given a range space (X, A) with constant VC dimension then for $\forall A \in A$ a random sample $S \subseteq X$ with constant probability will be an:

► ε-Sample

Idea: Sample full data X and run SatScan on sample. For function ϕ with constant probability need:

- $|S| = O\left(\frac{1}{(\rho\varepsilon)^2}\right)$ for additive error bound on ϕ .
- ▶ Disks enumerated in O ((¹/_{ερ})⁶ log ¹/_{ερ})
 ▶ Rectangles enumerated in O ((¹/_{ερ})⁸)

Not good.

Given a range space (X, A) with constant VC dimension then for $\forall A \in A$ a random sample $S \subseteq X$ with constant probability will be an:

► ε-Sample

Given a range space (X, A) with constant VC dimension then for $\forall A \in A$ a random sample $S \subseteq X$ with constant probability will be an:

<ロ> <用> < 三> < 三> < 三> < 三</p>

► ε-Sample

► if
$$|S| = O(\frac{1}{\varepsilon^2})$$

► then $\left|\frac{|X \cap A|}{|X|} - \frac{|S \cap A|}{|S|}\right| \le \varepsilon$

► ε-Net

▶ if
$$|S| = O(\frac{1}{\varepsilon}\log(\frac{1}{\varepsilon}))$$

▶ and if $\frac{|X \cap A|}{|X|} \ge \varepsilon$ then $|S \cap A| \ge 1$

Consider range space (X, A) then random samples of X:

• *N* of size
$$n = O(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$$
 and

• S of size
$$s = O(\frac{1}{\varepsilon^2} \log \frac{1}{\delta})$$
.

Then with constant probability for $\forall A \in \mathcal{A}$ then $\exists A' \in \{A \cap N | A \in \mathcal{A}\}$ such that

$$\left|\frac{|A \cap X|}{|X|} - \frac{|\psi(A') \cap S|}{|S|}\right| \le \varepsilon$$

<ロ> <用> <用> < 三> < 三> < 三> < ○<

Note: Some restrictions beyond VC dimension required that rectangles and disks satisfy. See paper for details on ψ .

Combine sample bound with Lipschitz bound.

•
$$|N| = O\left(\frac{1}{\varepsilon\rho}\log\frac{1}{\varepsilon\rho}\right)$$

• $|S| = O\left(\frac{1}{(\varepsilon\rho)^2}\right).$

Runtime with constant probability:

• Disks:
$$O\left(|X| + \frac{1}{(\varepsilon\rho)^4}\log^3\left(\frac{1}{\varepsilon\rho}\right)\right)$$

• Rectangles:
$$O\left(|X| + \left(\frac{1}{\varepsilon\rho}\log\frac{1}{\varepsilon\rho}\right)^4\right)$$

(日) (國) (臣) (臣) [臣]

DQ C

Attain error bound $|\phi - \phi_{N,S}| \leq \varepsilon$.

Theory Sample sizes:

 $\mid N \mid = O\left(\frac{1}{\varepsilon\rho}\log\frac{1}{\varepsilon\rho}\right)$ $\mid S \mid = O\left(\frac{1}{(\varepsilon\rho)^2}\right).$

Runtime with constant probability:

- Disks: $O\left(|X| + \frac{1}{(\varepsilon\rho)^4} \log^3\left(\frac{1}{\varepsilon\rho}\right)\right)$
- Rectangles:

$$O\left(|X| + \left(rac{1}{arepsilon
ho}\lograc{1}{arepsilon
ho}
ight)^4
ight)$$

Error bound $|\phi - \phi_{N,S}| \leq \varepsilon$.

Can be even faster

• Orthogonal to [?] approach.

Sac

• Can be combined with [?].

Questions

C++ implementation with Python wrapper is available at: https://github.com/michaelmathen/SampleScan

Theory Sample sizes:

 $\mid |N| = O\left(\frac{1}{\varepsilon\rho}\log\frac{1}{\varepsilon\rho}\right)$ $\mid |S| = O\left(\frac{1}{(\varepsilon\rho)^2}\right).$

Runtime with constant probability:

- Disks: $O\left(|X| + \frac{1}{(\varepsilon\rho)^4}\log^3\left(\frac{1}{\varepsilon\rho}\right)\right)$
- Rectangles:

$$O\left(|X| + \left(rac{1}{arepsilon
ho}\lograc{1}{arepsilon
ho}
ight)^4
ight)$$

Error bound $|\phi - \phi_{N,S}| \leq \varepsilon$.

Can be even faster

• Orthogonal to [?] approach.

イロト イ押ト イヨト イヨト

Sac

• Can be combined with [?].

For Further Reading I

Linearization

< ロ > < 母 > < 注 > < 注 > < 注 > う < で</p>

Sample Range Approach

Symmetric Difference Range Space

- ► Consider a range space (X, S_A) where $S_A = \{A \triangle A' | A, A' \in A\}.$
- Has VC dimension bounded by $\nu \log(\nu)$.

ε -Net over Symmetric Difference

- Define a conforming geometric mapping ψ(A ∩ N) ⊂ ℝ² such that
 - $\forall A \in \mathcal{A} \text{ then } \psi(A \cap N) \cap N = A \cap N$
 - $\psi(A) \cap X \in \mathcal{A}$

Lemma

Given an ε -net N over (X, S_A) , a geometric mapping ψ conforming to A, then for any range $A \in (X, A)$, there exists a range $\psi(A') \cap X$ for $A' \in \{N \cap A | \in A\}$ such that $|A \triangle (\psi(A') \cap X)| \le \varepsilon |X|.$

Use mapping to find approximate count in S.

$$2\varepsilon \ge \left|\frac{|A \cap X|}{|X|} - \frac{|\psi(A') \cap X|}{|X|}\right| + \left|\frac{|\psi(A') \cap X|}{|X|} - \frac{|\psi(A') \cap S|}{|S|}\right| \ge \left|\frac{|A \cap X|}{|X|} - \frac{|\psi(A') \cap S|}{|S|}\right|$$

Scan Statistic

• Data set $X \subseteq \mathbb{R}^2$ and for each $x \in X$

- m(x) is a measured value.
- ► b(x) is a baseline value.
- ► For each region $A \in \mathcal{A}$ define $m_X(A) = \frac{\sum_{x \in A} m(x)}{\sum_{x \in X} m(x)}, \quad b_X(A) = \frac{\sum_{x \in A} b(x)}{\sum_{x \in X} b(x)}$
- Kulldorff Scan Statistic:

$$\phi_X(A) = m_X(A) \ln \frac{m_X(A)}{b_X(A)} + (1 - m_X(A)) \ln \frac{1 - m_X(A)}{1 - b_X(A)}.$$

<ロ> <用> <用> < 三> < 三> < 三> < ○<

Gaussian, Bernoulli, Gamma, etc versions also exist.

Matched Error Experiments

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □