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ABSTRACT
Finding anomalous regions within spatial data sets is a central
task for biosurveillance, homeland security, policy making,
and many other important areas. These communities have
mainly settled on spatial scan statistics as a rigorous way
to discover regions where a measured quantity (e.g., crime)
is statistically significant in its difference from a baseline
population. However, most common approaches are ineffi-
cient and thus, can only be run with very modest data sizes
(a few thousand data points) or make assumptions on the
geographic distributions of the data.

We address these challenges by designing, exploring, and
analyzing sample-then-scan algorithms. These algorithms
randomly sample data at two scales, one to define regions and
the other to approximate the counts in these regions. Our
experiments demonstrate that these algorithms are efficient
and accurate independent of the size of the original data set,
and our analysis explains why this is the case. For the first
time, these sample-then-scan algorithms allow spatial scan
statistics to run on a million or more data points without
making assumptions on the spatial distribution of the data.

Moreover, our experiments and analysis give insight into
when it is appropriate to trust the various types of spatial
anomalies when the data is modeled as a random sample
from a larger but unknown data set.

1. INTRODUCTION
Statistical spatial anomaly detection has become an impor-

tant tool for many problems such as bio-surveillance (detect-
ing disease outbreaks), crowd control, weather monitoring,
and pinpointing influential players in a social network. As
the scale of the data has grown rapidly many of the stan-
dard approaches to these problems have become infeasible.
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Figure 1: Sampled Philadelphia crime data with thefts as
red measured points and a region with high theft circled.

Commonly used adhoc approaches pre-process the data and
may affect the underlying statistics in unpredictable ways.
These approaches may also restrict the algorithms to run on
a subset of the data, again missing existing anomalies.

Another issue often evident in anomaly detection is the
multiple comparisons problem [11, 7]. In this scenario, there
are many possible hypotheses tested. If any one of them is
deemed significant, that hypothesis is reported as anomalous.
However, when significance is based on a fixed threshold and
fixed data set, then as more and/or richer sets of hypotheses
are considered, it is more likely that at least one of these
hypotheses will be reported as significant. This issue can be
dealt with by adapting the significance threshold to the set
of hypotheses considered. However, this is typically overly
conservative or adds to the computational complexity of the
problem, again limiting the scale to large data. As more
studies operate in a “data science” view where large corpuses
of data are used for many parallel studies, understanding
good practice in these scenarios is of pressing importance.

Anomaly Detection Pipeline. In particular, the process of
detecting statistically significant spatial anomalies while ac-
counting for multiple comparisons is often broken down into
the following three abstract steps.

(S1) Formulate a model of the data and choose a correspond-
ing measure φ to score the likelihood of an anomaly in
a chosen region.

(S2) Scan the data set to find a region A which (approxi-
mately) maximizes the measure from (S1).

(S3) Assess whether the score φ(A) indicates that A is a
significant anomaly, either directly raising an alarm, or
investigating further.



The first step (S1) is by now fairly well understood. Kull-
dorff introduced the Spatial Scan Statistic [13] for Poisson
data, which has since been extended to other models by
Kulldorff [14] in the extensive SatScan software and more
generally by Agarwal et al. [2]. There are many recently pro-
posed variants such as the Bayesian [19], expectation-based
Poisson [17], and exponential [10] scan statistics.

However, steps (S2) and (S3) are quite time consuming.
Often (S2) involves considering all possible circular, rectan-
gular, or other geometrically defined regions. Luckily, due to
VC-dimension-type arguments, the number of regions with
distinct data is typically bounded polynomially in the num-
ber of data points (e.g. with n data points, there are O(n3)
circles or O(n4) rectangles). In some cases, one can ensure
that all regions are considered without explicitly measuring
φ in all regions [2]. Another popular approach is to map the
data to a discretized grid [18] or a set of pre-defined regions
such as counties or zip codes [18]. However, Agarwal et al. [1]
demonstrated such mappings can introduce large errors due
to boundary issues.

Moreover, to avoid dangerously relying on a fixed threshold,
(S3) typically involves permutation testing. This involves
repeating step (S2) on many random inputs that should
not intentionally give rise to a large φ(A)-valued region
but might due to peculiarities of randomness. Permutation
testing further amplifies the computational bottlenecks in
(S2).

Big Spatial Data. Despite discretization concerns, many pa-
pers have considered data limited to a fixed discretization [18].
In many cases, this limitation is because available data is
only available at a certain resolution [22] or because of pri-
vacy concerns [12] is only available in that format. However,
new data sources are now available at the scale of thousands
or even millions of undiscretized spatial data points, and
the available super-linear methods are not tractable. For
instance, OpenStreet Maps has over 100 million spatially lo-
cated data points, and Twitter witnesses roughly 400 million
tweets per day, many of which include locations. Detecting
an anomalous event at this scale which may indicate an in-
teresting social event, pattern, or uprising is infeasible with
current statistical anomaly detection approaches.

Furthermore, Agarwal et al. [1] proved that sublinear ap-
proaches such as streaming cannot provide strong approxi-
mation guarantees to the function Φ = maxA∈A φ(A). Thus,
standard approaches for large data problems seem hopeless.

Yet, at the same time, it is now common for such data
sets to only be available through an already compressed
random sample. For instance, one might only access Twitter
through a 1% or 10% feed. The yearly American Community
Survey (ACS) has replaced the decennial census [4] for most
population modeling but samples at a much smaller rate [6].
Moreover, modern big data systems such as BlinkDB [3] or
STORM [5] allow fast interactive queries by only making
data available through a random sample. In these cases, the
“full data set” is actually a random sample of a much larger
data set; this property and its approximation implications
should be taken into account in any analysis or approach.

1.1 Our Approach and Results
We address the scalability of the spatial anomaly detection

problem while also considering its effect on the multiple
comparisons problem. To do so, we apply data reduction
approaches, reducing enormous data sets in size so that less

scalable approaches can be applied. We show that despite
the lower bounds on the full discrepancy function φ, we
can still find many types of spatial anomalies efficiently and
robustly. We note that this does not contradict prior space
lower bounds (from a streaming context) since we restrict
to only consider ranges with a minimum size. Our approach
relies on two observations: first, we can approximate the
full set of ranges with a much smaller reduced “net” set of
ranges, and second, we can approximate φ in these ranges
using random ε-samples.

2. PRELIMINARIES

2.1 Statistics, Permutation Tests, and Power
Spatial Scan Statistics. Consider a data set X ∈ R2. Each
data point x ∈ X is given two labels about its baseline value
b(x) and its measured value m(x). In the simplest setting,
b(x) = 1 for all data points (representing the population),
and m(x) ∈ {0, 1} and only 1 if it represents some reading
that would contribute towards an anomalous event.

Given a region A ∈ A where A ⊂ 2X , define bX(A) =∑
x∈A b(x)/BX and mX(A) =

∑
x∈Am(x)/MX where BX =∑

x∈X b(x) and MX =
∑
x∈X m(x). Sometimes for intuition

it is nice to attribute A to a subset R2 (as opposed to combi-
natorially to a subset of X), and often there are restrictions
of the subset of R2 which can define A, as in it is a disk or a
rectangle.

The Kulldorff scan statistic (or Poisson spatial scan statis-
tic) is defined Φ(A, X) = maxA∈A φX(A) where

φX(A) = mX(A) ln
mX(A)

bX(A)
+ (1−mX(A)) ln

1−mX(A)

1− bX(A)
.

This will be the default scan statistic for our studies as it is
the most common and simplest. It considers the phenomenon
that at each location either exists (m(x) = 1) or does not
(m(x) = 0), and in the data as a whole, this phenomenon
exists at a fixed rate p.

However, via other models of functions m and b, one
can derive other scan statistics. For instance, see [14, 2]
for a discussion including Gaussian, Bernoulli, and Gamma
versions. These behave quite similar to φX , and a longer
version of this paper will extend our analysis to these variants.

Permutation Tests. A permutation test randomizes the func-
tions m (and perhaps b) while maintaining the aggregate
statistics, then recalculates Φ. By repeating this process
some number (e.g. T = 999 times), we can estimate the
fraction of random functions m that would have a Φ score as
high as the input data. Often if the data’s Φ value is larger
than 95% of the randomized trials, then we may consider the
found region A to be an anomaly. More generally, a practi-
tioner would set a p-value and then report the ((1− p) ∗T )th
largest Φ value as ηp, the significance threshold at level p;
the above example has p = 0.05 as is most common.

This step calculates a distribution on the values Φ under
random m that otherwise aligns with the input data and
then compares the Φ obtained from the real data to the
significance threshold ηp of this distribution.

Power Calculation. The statistical power of a test (such as
the 95% threshold test described above) is the empirical prob-
ability it rejects the null hypothesis when the null hypothesis
is indeed false. To calculate this, we create synthetic data



that has an anomaly and then run any algorithm to detect
spatial anomalies on this data. We repeat this experiment
several (say 100 times) and report what fraction of the time
the algorithm succeeds; this fraction estimates the power.

Note one can interpret the power as the true-positive rate.
On the other hand, one would want to also estimate the
false-negative rate. However, this is precisely the p-value, so
we can interpret the power as the true-positive rate when
the false-negative rate is fixed at the p-value.

2.2 Random Sampling and Learning Theory
Much is known about the accuracy of randomly sampled

data S ⊂ X with respect to a fixed family of query ranges
A. This line of work typically starts with VC-dimension
theory [21]. Here a range space (X,A) is the family of subsets
Y ⊂ X induced by containment in some range A ∈ A; that
is {Y ⊂ X | Y = A ∩X,A ∈ A}. The VC-dimension ν of a
range space (X,A) is the size of the largest subset Y ⊂ X
such that all subsets Z ⊂ Y can be written as Z = Y ∩ A
for some A ∈ A. Informally, “well-behaved” range spaces
have bounded VC-dimension. For instance, when X ⊂ R2,
then when A is defined by all disks ν = 3, and when A is
defined by all axis-aligned rectangles ν = 4. Informally, one
can think of the VC-dimension as the number of points or
values required to define any particular range A ∈ A. This
corresponds with the property that a range space (X,A)
with constant VC-dimension ν induces at most |X|ν distinct
subsets of X; this polynomial bound is a huge improvement
over the worst case 2|X| exponential bound. For what follows,
we will restrict error parameters ρ < ε ≤ 1/2 and δ ∈ (0, 1).

An ε-net is a subset S ⊂ X such that for all A ∈ A such
that |A ∩X| ≥ ε|X| (i.e., the range is large enough) then
there must exists some point x ∈ Y such that x ∈ A, or
in other notation A ∩ Y 6= ∅ (i.e., then the range A is “hit”
by Y ). For a range space (X,A) with VC-dimension ν, a
random sample S ⊂ X is an ε-net with probability at least
1− δ for |S| = O((d/ε) log(1/εδ)) [9].

An ε-sample (or ε-approximation) is a subset S ⊂ X so

max
A∈A

∣∣∣∣ |X ∩A||X| − |S ∩A||S|

∣∣∣∣ ≤ ε.
That is, for all ranges A ∈ A the density with respect to
X is preserved by S up to an additive error ε. For a range
space (X,A) with VC-dimension ν, a random sample S ⊂ X
is an ε-sample with probability at least 1 − δ for |S| =
O((1/ε2)(ν + log(1/δ))) [21, 15].

A relative (ρ, ε)-approximation is a subset of S ⊂ X so

max
A∈A

∣∣∣∣ |X ∩A||X| − |S ∩A||S|

∣∣∣∣ ≤ εmax

{
ρ,
|A ∩X|
|X|

}
.

For a range space (X,A) with VC-dimension ν, a random sam-
ple S ⊂ X is a relative (ρ, ε)-approximation with probability
at least 1− δ for |S| = O((1/ε2ρ)(d log(1/ρ) + log(1/δ))) [8].

Takeaways. These results suggest the following property:
much about these query ranges can be preserved as long as
one is willing to ignore the error on ranges with few points.
This is obvious from the ρ parameter in the relative (ρ, ε)-
approximation and also from the meaninglessness of ε-net
and ε-sample bounds when |A ∩X| ≤ ε|X|.

For all above results, the size of the required sample |S|
depends only on the error parameter (and VC-dimension) but
not on the size of the original data. This implies that these

bounds should require a fixed size sample even as the full
data set size |X| grows unbounded. In fact, these results all
generalize to when X is actually represented by a continuous
density function that is essentially infinite. Moreover, the
size of the implied minimum query range size (below which
the bounds are meaningless) is a fixed fraction of the full
data set size, not an absolute fixed size. Under a random
sample we should not expect meaningful results on queries
below a fixed percentage of the full data set.

Adapting these bounds to understand spatial scan statistics
requires more work and is the focus of Section 5.

3. SAMPLE-THEN-SCAN ALGORITHMS
The main contribution of our paper is the design, im-

plementation, and analysis of sample-then-scan approaches
towards computing spatial scan statistics. These algorithms
randomly sample the full data set X creating two new data
sets. The smaller subset N ⊂ X of size n serves as a “net”
to define a set of regions to scan, so no region on the full
data is too far from one “caught” in the net. The larger
sample S ⊂ X of size s is then used to approximate the
density of points in each region and to approximate the scan
statistic. These two samples are motivated by the ε-net and
ε-sample properties discussed in Section 2.2 and validated
by our experimental results in Section 4.

This sample-then-scan strategy has two main motivations.
First, sampling to a much smaller data set obviously and
drastically reduces the computational complexity of the al-
gorithms. After sampling, the runtime depends only on the
accuracy of the approximation. Second, even a small data
set that is not explicitly sampled for the purpose of analysis
likely should be modeled as a random sample from some true
underlying distribution.

As the analysis in Section 5 will show, it will be important
to sample separately from all the points and from those with
measured value 1. Otherwise, if there are very few points
with measured value 1, we may not obtain enough in our
sample. Let Xm = {x ∈ X | m(x) = 1} and Xb = X. Then
we will consider nets Nm ∼ Xa and Nb ∼ Xb and samples
Sm ∼ Xa and Sb ∼ Xb. It will often be convenient to refer
to N = Nm ∪Nb and S = Sm ∪ Sb.

3.1 Family of Scan Regions
The next detail of these algorithms is which families of

range to consider and how to efficiently enumerate their
scan statistic scores to find the maximum one. As with
past approaches [1, 18, 13], we focus on either circular or
rectangular families of regions.

Rectangles. For rectangles R, we use an approach similar
to the Exact algorithmic approaches in [1] with the added
complication of having to evaluate regions defined by N using
the larger point set S. We refer to this algorithm as allrect.
Given a set of |N | = n points and |S| = s, allrect scans over
all O(n4) ranges and also aggregates the count of measured
and baseline points in each range in O(n4 + s log(n)) time.
We leave the tedious details to the long version.

More Disks. For the circular regions, we will consider the
set D3, which contains all combinatorial discs. For a set of
points of size n, there are O(n3) such discs. This can be
seen by considering any set of points Y ⊂ N such that there
exists a disk D such that all Y are contained in D and no
points in N \ Y are in D. Then we can shrink the disk D to



Figure 2: Orange points are in N , red points are in Sb,
and blue points are in Sm. The moredisks algorithm splits
the points along a hyperplane and then enumerates over a
sequence of disks defined by two net points and one point
from Sm ∪ Sb
the minimum disk DY so that it contains precisely the same
set Y . For any such disk DY , there are generically at most 3
points on its boundary (or if there are more, we can remove
all but 3 and the minimum such disk does not change). This
quantity 3 is known as the combinatorial dimension of D3.
We can thus enumerate all such triples of points and consider
the disc with those points on the boundary. Any viable
subset Y ⊂ N is defined by one of these disks.

Enumerating all such disks in D3 can be done in O(n3)
time, not counting the time to calculate the fraction of
measured and background points in each disk. This operation
may naively take O(s) time per disk or perhaps O(log s)
using theoretical range counting data structures at the cost
of increased space usage and hidden constants. Rather,
we describe a direct way to enumerate all such disks while
maintaining their contents, described in Algorithm 3.1, very
similar to what is used in the SatScan software [14]. The idea
is to consider every possible pair of points p1, p2 ∈ N and
enumerate all disks which have these two on the boundary.
Let ` be the line through these two points. The largest radius
disks containing p1 and p2 on the boundary are in the limit
halfspaces with ` on its boundary. We sweep through all
such disks with p1, p2 and one other point p on its boundary
with the midpoint of the sweep being a disk with only p1p2
defining its diameter; see Figure 2. Given such a pair of
points, we can assign a value for each other point p as the
signed distance from ` to the center of the smallest enclosing
disk; see Algorithm 3.2. This value corresponds with the
disk order. Each point below ` leaves each disk once and
never enters again. Each point above ` starts outside the
disk, enters it once, and then never leaves. Thus, this sweep
can be performed on S in O(s) time after sorting all points
according to this order in O(s log s) time. Therefore, without
complex range searching, this procedure can be executed in
O(n2s log s) time. We call this algorithm moredisks.

We also experiment with a version called alldisks which only
considers disks where p ∈ N which runs in time O(n2s log n).

Center Disks. We also develop algorithms that are based on
scanning the set D2, the set of disks which has some point
in the data set S as its center. There are only O(s2) subsets
of S (of size s) defined by such disks. Each point in the
set S defines a center, and expanding outwards from this
point defines at most s different disks each containing a set
of points. Since there are s possible center points and from
each O(s) unique radii, there are only O(s2) such possible

Algorithm 3.1 moredisks

Scan Statistic Score Φ = 0
for (p1, p2) in N do

Sort p ∈ S increasing value of Disk Order(p1, p2, p)
L = {s ∈ S | s below line going through p1, p2}.
Set MD = |L ∩ Sa| and BD = |L ∩ Sb|
for p ∈ S in increasing Disk Order(p1, p2, p) do
ξ = +1 if p ∈ L and ξ = −1 otherwise
if (p ∈ Sm) then MD = MD + ξ
if (p ∈ Sb) then BD = BD + ξ
mA = MD/|Sm|; bA = BD/|Sb|; φ = φ(mA, bA)
if (bA ∈ [βρ, 1− βρ] & mA ∈ [β′ρ, 1− β′rho] & φ > Φ)
then Φ = φ

return Φ

Algorithm 3.2 Disk Order

Input: (p1, p2, p) to assign order of p against p1, p2
Generate center c of disk that goes through p1, p2, and p
u = the normal to the line going through p1 and p2
return 〈u, (c− p1+p2

2
)〉

subsets of points. In fact, this intuition implies a way to
enumerate all discs and the corresponding counts of points
(of S) contained within each one (as formalized in Algorithm
3.3). For each point p1 ∈ S consider it as a center of a
disk. Then sort all other points p2 ∈ S in increasing distance
‖p1 − p2‖ from p1. Then scan over these points p2 in sorted
order, maintaining the points processed so far as inside the
disk; that is we grow the disks outwards from the center.
This process takes O(s2 log s) time, and is called center.

Another version which considers radii points p1 ∈ N (a
smaller “net” set of points) is called cNet. The analysis from
Section 5 about the covering properties of nets does not apply
to D2 in the same way it does for D3 and R; therefore cNet
and center do not have the same guarantees as moredisks,
alldisks, and allrect even though it uses the net in the same
way.

In our experiments in Section 4 both of algorithms (cNet
and center) perform notably worse in finding the accurate
range than the algorithms for D3 or R; this likely is the
result of considering far fewer ranges. However, they are
much more efficient for the same number of points.

Algorithm 3.3 center

Scan Statistic Score Φ = 0
for p1 in S do

Sort p2 ∈ S increasing value ‖p1 − p2‖
Set MD = 0 and BD = 0
for p2 ∈ S in increasing ‖p1 − p2‖ do

if (p2 ∈ Sa) then MD = MD + 1
if (p2 ∈ Sb) then BD = BD + 1
mA = MD/|Sa|; bA = BD/|Sb|; φ = φ(mA, bA)
if (bA ∈ [βρ, 1− βρ] & mA ∈ [β′ρ, 1− β′rho] & φ > Φ)
then Φ = φ

return Φ

Error Parameterized Runtime. Finally, we introduce values
of n and s so that we can guarantee additive error on our
output Φn,s. It is not possible to universally guarantee a
desired bound of a Φ (the statistic on the full data) such that



Table 1: Runtime in terms of samples, assuming n < s.

Ranges Algorithm Runtime

D2 cNet O(ns log s)

D2 center O(s2 log s)

D3 alldisks O(n2s logn)

D3 moredisks O(n2s log s)

R allrect O(n4 + s log(n))

Φ− ε ≤ Φn,s ≤ Φ + ε since small ranges (e.g., containing a
single point) are very sensitive to sampling error. Previous
approximation bounds [2] (approximating Φ, not the data as
we do) assumed that each range contains at least an absolute
constant number of points. However, it is known under this
setting [1] that sampling cannot achieve additive error as
desired.

Rather, we make a slightly stronger restriction, param-
eterizing forbidden ranges by ρ ∈ (0, 1) and only allowing
ranges with bA ∈ [βρ, 1 − βρ] and mA ∈ [β′ρ, 1 − β′ρ] where

βρ = ρ+ ε and β′ρ = e−1/ρ + ε. This is easy to enforce in all
of our algorithms, as seen in the psuedocode.

We set s = O( 1
(ερ)2

log 1
δ
) and n = O( 1

ερ
log 1

ερδ
) to achieve

ερ-samples and ερ-nets for these large enough ranges with
probability at least 1−δ. One can typically think of log 1

δ
as a

small constant and for intuition just ignore it. Section 5 will
provide rigorous upper bounds for the error of our algorithms
with these settings. Since these are asymptotic bounds, we
will experiment directly with sampling parameters s and n.

4. EXPERIMENTS
In this section we evaluate the stability of our sample-then-

scan framework. We compare the various proposed scan
algorithm algorithms against state-of-the-art techniques to
evaluate their effectiveness and efficiency. We also explore
how various parameter choices affect the performance. This
includes parameters of the algorithms (sampling sizes of n
and s) and parameters of the data (measured rates p and q,
and planted cluster size r). For our comparisons we mainly
use synthetic values generated at the real locations of 5
million geolocated tweets.

Algorithm 4.1 Significance-Test(X,σ, t)

for i = 1 to t (# permutations) do
Xi ∼ γ % γ := null distribution
Φi = Alg(Xi)

µ = {Φ1,Φ2, · · · ,Φt}
(Φ,D) = Alg(X)
if (Pr[Φ > µ]) > 1− σ) then

return (True, D)
else return (False, D)

Experimental Framework. To evaluate our algorithms, we
generate anomalous regions in several ways and then measure
how consistently and efficiently our algorithms can detect
them. Detecting an anomalous region has two components.
First, the algorithm must return a region D (as the most
anomalous) that is sufficiently close to the planted one. We
consider a found region sufficiently close to a planted one if
their Jaccard distance is less than τ = 0.4. Our experiments
justify this as a reasonable threshold. Second, the algorithm

Table 2: Default values and range for parameters.

variable default range
in-region rate: q .08 [.04, .08]

out-of-region rate: p .04 [.02, .08]
region size: r .05 [.01, .05]

net size: n 100 [20, 200]
sample size: s 4000 [100, 6000]

must recognize that the data in the found region occurs with
statistically low probability. We consider it significant if
its discrepancy score Φ(D) is larger than all but at most
σ = 0.05 fraction of the most anomalous region found under
permutation tests as shown in Algorithm 4.1. The null
distribution here uses the same baseline parameters as the
input data but without a planted region. The full procedure
is outlined in Algorithm 4.2.

Algorithm 4.2 Power-Test(X, σ = 0.05, τ = 0.4)

(Success,D) = Significance-Test(X,σ, t = 5000)
if (Success and (Jaccard-Distance(D,D∗) ≤ τ)) then

return True
else return False

We experiment using a real data set of |X| = 5 million
geolocated tweets from North America. The latitude and
longitude of these tweets represents the spatial coordinates
of the data. Then we synthetically change whether the data
points have some measured value. In particular, we plant
a circular region from D3 where the measured points occur
more frequently than outside that region. These regions
are characterized by three parameters. The value r ∈ (0, 1)
represents the fraction of baseline points in the planted range.
Points inside the region are assigned to have the measured
effect with rate q and points outside with rate p. We attempt
to study the algorithms in regions where their accuracy
begins to deteriorate. In fact, we observe fairly sharp phase
transitions between when regions are detected as anomalous
or not. The ranges and default values (chosen to highlight
these phase transitions) are shown in Table 2. Figure 1 shows
an example region and measured points from another data
set.

We evaluate the effect of sampling using five of our algo-
rithms (alldisks, center, cNet, moredisks, allrect). We also com-
pare against two existing algorithms for which we could ob-
tain code binaries: agarwal [1](Approx-Extents) and neill [18],
which both scan R or a subset on a grid.

Finding a Planted Region. We first experiment by varying
one parameter at a time while keeping others at their default.
Then we measure the Jaccard distance between the found
region and the planted one. We linearly varied 200 different
parameter values across the range, and to smooth the noise,
we plot the kernel regression of the Jaccard distance. We
shade in a region of the average distance to the regressed value
in Figure 3 (varying sampling parameters) to show the noise
but omit these in Figure 4 (varying the data parameters) to
make it less cluttered. Observe that alldisks, moredisks, and
allrect consistently converge to a Jaccard distance less than
τ = 0.4 as the data signal becomes more clear or the sampling
parameters increase. This threshold is drawn as a dashed
line. Algorithms cNet and center do not consistently cross
this threshold at this value, although center does often. This
probably indicates that the window range D2 is too sparse as



Figure 3: Expected Jaccard distance between found and planted range with default parameters values as n (left) and s (right)
vary. Plotted as kernel regression of 200 tested parameter values, with shading at average distance to the interpolated value.

Figure 4: Expected Jaccard distance between found and
planted range with default parameters values as we vary
q (top), p (middle), and r (bottom). Plotted as kernel
regression of 200 tested parameter values.

a set of scan windows; and it is probably not just a mismatch
in the shape of the planted range since allrect, which scans
R, has error nearly identical to alldisks and moredisks which
scan D3.

We claim it is not necessary (or reasonable to expect) to
find the planted region exactly. The optimal boundary is
likely to fluctuate through the random process with which
the data is generated (or observed). If we do find a close
enough region (in this case overlapping most points) further
investigation can interactively consider boundary cases [20].

Next observe that as we vary the data parameters, in
Figure 4, that as p and q become closer, then all algorithms
quickly degrade in their ability to find the planted region.
This occurs with q < 0.06 (default p = 0.04) and with
p > 0.05 (default p = 0.08). This is expected since at these
values it is easy for even a single non-planted region to have
a high fraction of measured points due to random variation.
Also as the region size (measured as an r fraction of points)
becomes smaller, the algorithms have a harder time, starting
around 2.5% of the data. This is due to random variation
which is explained analytically in Section 5, and helps justify
not considering regions with less than ρ fraction of the points.

Similarly, Figure 3 shows that as the net size n becomes
greater than 50, the algorithms become quite stable (for a
default range size of r = 0.04). Similarly as the sample size s
becomes greater than 3000 or 4000, the algorithms are able
to consistently distinguish the planted region from a non-
planted one. At the default values (n = 100 and s = 4000),
and beyond, both converge to about a Jaccard distance of
only 0.2 (for allrect, moredisks, alldisks), and not better due
to boundary conditions in the data generation.

Significance of the Found Cluster and Power Test. Next,
to completely assess the statistical power of the different
algorithms we propose, we need to calculate the probability
the correct region is found and deemed significant as in
Algorithm 4.2. To do so we use 5000 permutation tests,
Jaccard distance threshold τ = 0.4 and a p-value of σ = 0.05.
Figure 6 shows the effect as we vary the in-region rate q,
the out-of-region rate p, and the region size r. As q gets
significantly larger than p, or the region gets large enough
that the default difference become significant, then the power
goes to 1. That means we always recover the right region
and declare it significant. On the other hand, when the
in-region and out-of-region rates become close, then power
degrades. cNet is the most susceptible to this, and then center,
stemming almost entirely from their issues in finding the right
region as shown in Figure 4. When the region shrinks the



Figure 5: Power of sample-then-scan algorithms (see Algorithm 4.2) as the sampling parameters n (left) and s (right) vary.

Figure 6: Power of sample-then-scan algorithms (see Algo-
rithm 4.2) as the data parameters q (top), p (middle), and r
(bottom) and modified. Plotted as kernel regression of 200
tested parameter values.

power also decreases (as explained by our analysis in Section
5). It does so more rapidly for cNet because it lacks the
guarantees that the other algorithms possess, and only scans
a net of the smaller set D2.

Next in Figure 5 we show a line plot of varying the sam-
pling parameters n and s in the algorithms. As n and s
increase, the power predictably increases. At a critical point
(around n = 50 and s = 3000) the power levels off indicating
that increasing the number of regions by changing n or by
increasing the accuracy of the found regions by changing s
fails to significantly increase the overall accuracy. For cNet
it requires a much larger number of n and s to get to such
a state; however note that it has a much smaller runtime
dependence in n, and actual runtime as we will see next. The
techniques are quite resilient in that even with small sample
sizes (using the default data settings) the statistical power
of the methods with guarantees is always above about 0.9
after some critical threshold.

The curves track closely to the Jaccard distance curves
found in Figure 4 and Figure 3. Thus, if the data in the
region is anomalous enough to be consistently found, then it
is also likely significant in the p-value sense.

Efficiency. We first plot our sample-then-scan algorithms in
runtime as a function of n and s in Figure 7. More than
the asymptotic bounds in Table 1, this shows the actual
complexity induced by more complex data manipulation in
scanning D3. Here we see that alldisks and moredisks are
much slower than other simpler algorithms. As seen in the
gap between moredisks and alldisks, just the constant time
step of evaluating φ may be significant (repeated s times
in moredisks and n times in alldisks). We see that cNet is
incredibly fast (hard to even see on plot) as its asymptotic
runtime would indicate. Also allrect is extremely efficient.
A careful implementation and analysis detaches the O(n4)
runtime for scanning R from the O(s log(n)) runtime to
maintaining counts in each range, but it appears the O(n4)
penalty will start becoming problematic if we need n > 200.

In testing efficiency we also attempt to compare against
some code from existing approaches which do not sample
before scanning. This includes the Neill [18], Agarwal [1], and
our implementation of SaTScantm [14]. The Neill approach
maps all data to grid cells (at a user defined size), and then
finds the most anomalous rectangular union of grid cells
using a branch-and-bound search. Given a grid of size g × g,
it requires O(g2 log2 g) time, but may fail to find reasonable
regions if the grid cells are too large (for instance if the data
set is state-wide or nation-wide, but the anomalous region is



Figure 7: Time in seconds for sample-then-scan algorithms
as function of sample parameters n and s.

Figure 8: Time in seconds needed to find a region with
Jaccard distance less than τ = 0.4.

within only part of a densely populated city) or take at least
O(g4) if certain conditions of the underlying data are not
satisfied. The Agarwal approaches also consider rectangles
(not necessarily on a grid), and improves beyond the naive
approaches by approximating the discrepancy function in
a way that allows all rectangles to be scanned faster. The
SaTScantm algorithm considers all disks across the dataset.
Since both Agarwal and SaTScantm have runtime that scales
super-linearly with the data set size they quickly run into
issues as the data set size gets large. Since all algorithms have
various and different parameters, we provided a best effort
to automatically tune the parameters to attain a Jaccard
distance of τ = 0.4. To match the parameters we choose
s = 1

2
n2 which is close to what the theory would predict the

ratio between n and s should be. This adaptive approach,
where we attempt to choose the best parameters for each
algorithm was basically necessary to compare against Neill.
Their code binary only returns a cluster if it is also deemed
significant, and if we set g smaller (more aggressively) then
a large fraction of the time it does not return any cluster at
all (even with a significant region that our algorithms find).

Figure 9: Time in seconds needed to find a region containing
r fraction of input points up to Jaccard distance 0.4.

Figure 8 shows that already at |X| = 2000, agarwal and
SaTScantm are already significantly slower than both neill
and allrect, which each scan R. Hence we omit agarwal from
further scalability tests. Note at this scale, neill is also slower
than allrect since due to its required pre-processing time.

Next we plot the runtime as a function of r in Figure 9,
using |X| = 5,000,000. We see all of our algorithms are
significantly faster than neill. As r decreases, the sample-
then-scan algorithms all take slightly longer (as predicted),
but neill is roughly flat since it requires the same grid size
g to obtain this error, and since it does not suffer from the
same sampling conditions as our algorithms do.

Interestingly, to achieve τ = 0.4 Jaccard distance, cNet
and center run significantly faster than the other algorithms.
Thus although they perform worse for the same data and
sampling parameters, they make up for it in this setting by
scanning far fewer regions.

On Grid Partitioning. Spatial partitioning methods (e.g.,
gridding methods like neill) are not guaranteed to work well
in situations where the anomalous region is spatially small
compared to the entire region. For instance an anomaly (say
autotheft crimes) within a densely populated city with a
dataset spanning an entire state. A data-adaptive partition-
ing, such as the one based on our net N , will not encounter
these same challenges, and could then be used in conjunction
with branch-and-bound approaches [18, 23].

5. WHY THESE METHODS WORK
To demonstrate that our proposed methods are well-founded

requires several steps. First, we need to show that the re-
stricted family of ranges, those induced by our net N , gives
an additive error bound for all ranges in the full data set.

Second, we need to show that the scan statistic φ is stable
under random sampling; e.g., that our sample set S is large
enough to preserve the statistics for large ranges.

Finally, we combine these bound together to assess the
accuracy of our procedures and argue that our sample-then-
scan procedure is still a valid formulation and properly deals
with multiple hypothesis testing.

5.1 Coverage Properties of Net Range Spaces
The goal of this section is to explain why and when a

smaller set of sampled “net” points N ⊂ X can be used to
define which ranges to scan. Given a full data set X ∈ Rd
and range space (X,A), let A|N = {A ∩N |A ∈ A} be the
restriction of A to the points in N ⊂ X. Recall that an



element A ∈ (N,A) is a subset of N , and such a range does
not automatically induce a subset of X. Hence, we need to
define a geometric mapping ψ(A) ⊂ Rd and can then use
ψ(A) to define a subset A′ = X ∩ ψ(A). We say a geometric
mapping is conforming to A if for any N ⊂ X it has the
properties (i) any subset A ∈ (N,A) that ψ(A)∩N = A and
(ii) ψ(A) ∩X ∈ (X,A). For instance, for D3 a conforming
geometric mapping ψ(A) could be the smallest enclosing
disk. A similar mapping exists for R as the smallest enclosing
rectangle, but there is not always one for D2.

Now we need to show how to construct a set N ⊂ X and
a range space (N,A′) such that for each Ā ∈ (X,A) there
exists a range A ∈ (N,A′) such that |Ā4(X ∩ψ(A))| ≤ ε|X|,
and will also require that X ∩ ψ(A) ∈ (X,A). This extra
requirement is what makes it difficult to work with D2.

For this we use symmetric difference range spaces. For
a family of ranges A, let SA be the family of ranges made
up of the symmetric difference of ranges of the first type.
Specifically SA = {A14A2 | A1, A2 ∈ A}. If range space
(X,A) has VC-dimension ν, then (X, SA) has VC-dimension
at most O(ν log ν) [16]. Thus for constant ν (as is the case for
D3 and R) we can use asymptotically the same size random
sample as before.

Lemma 5.1. Given an ε-net N over (X, SA), a geometric
mapping ψ conforming to A, then for any range A ∈ (X,A),
there exists a range ψ(A′) ∩X for A′ ∈ (N,A|N ) such that
|A4(ψ(A′) ∩X)| ≤ ε|X|.

Proof. Let A′ = A∩N , the part of A in the net N , then
we have both (i) ψ(A′)∩N = A′ and (ii) ψ(A′)∩X ∈ (X,A),
since ψ is confirming. Now since N is an ε-net of (X, SA) then
we know that if there is no point x ∈ N in A4(ψ(A′) ∩X)
(see Figure 10), then |A4(ψ(A′)∩X)| ≤ ε|X|, as desired. So
to finish the proof, we show that A ∩N = (ψ(A′) ∩X) ∩N ,
which implies the condition for the ε-net. Since N ⊂ X, then
(ψ(A′) ∩X) ∩N = ψ(A′) ∩N = A′ = A ∩N .

This implies that we can select a large enough random
sample N (to satisfy an ε-net for (X, SA)) and then consider
(X,AN,ψ), a subset of all ranges in (X,A), instead of all in
(X,A), and incur only ε|X| absolute counting error. And
these correspond with the ranges in (N,A|N ) that we scan
over in our sample-then-scan algorithms.

Next, since (X,AN,ψ) ⊂ (X,A), then an ε-sample of (X,A)
will also be an ε-sample of (X,AN,ψ). This implies the
following theorem.

Theorem 5.1. Consider a range space (X,A) with VC-
dimension ν and conforming geometric mapping ψ, and con-
sider random samples of X:
• N of size n = O( ν log ν

ε
log ν log ν

εδ
) and

• S of size s = O( 1
ε2

(ν + log 1
δ
)).

Then, with probability at least 1− δ, any A ∈ (X,A) induces

a range A′ ∈ (X,AN,ψ) so that
∣∣∣ |A∩X||X| −

|A′∩S|
|S|

∣∣∣ ≤ ε.
5.2 Stability of Spatial Scan Statistics

Recall that Sm ⊂ X is a random sample of measured
points in X and Sb ⊂ X is a random sample of the baseline
points in X. With X, Sm, and Sb fixed and for a fixed region
A ∈ A simplify notation as bA , bX(A), mA , mX(A),

b̂A , bSb(A), and m̂A , mSm(A). Now our scan statistic
becomes

φ(mA, bA) = mA ln
mA

bA
+ (1−mA) ln

1−mA

1− bA
.

Figure 10: Yellow region is ψ(A′), blue region is ψ(A), filled
points are in N , and empty points are in X. The sym-
metric difference region, ψ(A)4ψ(A′), corresponds to the
yellow region and the blue region, but excludes the green
region. It does not contain any points from N and therefore
|A4(ψ(A′) ∩X)| ≤ ε|X|.

Lemma 5.2. If m̂A and b̂A are bounded such that for some
α ∈ (0, 1) and ρ ∈ (0, 1) we have that α+ε1 ≤ m̂A ≤ 1−α−ε1
and ρ+ ε2 ≤ b̂A ≤ 1− ρ− ε2 then if:

ε1 ≥ |mA − m̂A| and ε2 ≥ |bA − b̂A|

we have that

|φ(mA, bA)− φ(m̂A, b̂A)| ≤ ε1 ln
1

α
+ ε2

1

ρ
.

Proof. For simplicity we denote E1 = mA − m̂A and
E2 = bA − b̂A. The statistic φ is a convex function and
therefore by the first order condition of convexity

φ(mA, bA)− φ(m̂A, b̂A) ≤
〈
∇φ(mA, bA), (E1, E2)

〉
(1)

φ(mA, bA)− φ(m̂A, b̂A) ≥
〈
∇φ(m̂A, b̂A), (E1, E2)

〉
, (2)

where

∇φ(mA, bA) =

(
ln
mA

bA
− ln

1−mA

1− bA
,
bA −mA

(1− bA)bA

)
.

The gradient of φ blows up around the boundary, but since
α+ ε1 ≤ m̂A ≤ 1−α− ε1 and ρ+ ε2 ≤ b̂A ≤ 1− ρ− ε2, then
α ≤ mA ≤ 1 − α and ρ ≤ bA ≤ 1 − ρ. Then equation (1)
is upper bounded if we choose E1 and E2 to be of opposite
sign from the gradient term and of maximum magnitude〈
∇φ(m̂A, b̂A), (E1, E2)

〉
≤ ε1

∣∣∣ ln mA(1− bA)

bA(1−mA)

∣∣∣+ε2∣∣∣ mA − bA
bA(1− bA)

∣∣∣.
The first term is maximized by setting mA = 1 − α and
bA = ρ and the second term is maximized when mA = 1− α
and bA = ρ or when mA = α and bA = 1 − ρ. These two
settings are equivalent so we can upper bound the above by

ε1 ln
(1− α)(1− ρ)

α(1− ρ)
+ε2

∣∣∣1− α− ρ
ρ(1− ρ)

∣∣∣
= ε1 ln

(1− α)

α
+ ε2

1− α− ρ
ρ(1− ρ)

≤ ε1 ln
1

α
+ ε2

1− ρ
ρ(1− ρ)

= ε1 ln
1

α
+ ε2

1

ρ
.

We can repeat the above using equation (2), loosen the
constraints and choose E1 and E2 to be of opposite direction
to the gradient to get the same bound and therefore

|φ(mA, bA)− φ(m̂A, b̂A)| ≤ ε1 ln
1

α
+ ε2

1

ρ
.



If we set α = exp(−1/ρ) and ε1 = ε2 = ερ/2, then we

obtain |φ(mA, bA)− φ(m̂A, b̂A)| ≤ ε.

5.3 Combined Statistical Error Bounds
We can replace Φ = maxA∈A φ(mXm(A), bXb(A)) with a

new statistic Φn,s = maxA∈AN,ψ φ(mSm(A), bSb(A)) where
N and S are random subsets of S of size n and s, respectively,
both chosen from measured and baseline points separately.
Here we will assume both statistics only consider ranges A

so βρ ≤ |S∩A||S| ≤ 1− βρ, as enforced by our algorithms.

By Theorem 5.1 we can bound n = |N | and s = |S| to
obtain ερ/2 error in ε1 and ε2, which applies to searching
over the restricted “net” range space (X,AN,ψ). Combining
this with the stability results for φ in Lemma 5.2 we can
obtain our main result.

Theorem 5.2. Consider range space (X,A) with VC-dimension
ν and conforming geometric mapping ψ, and parameters
ε < ρ ≤ 1. Consider random samples of X:

• N of size n = O( ν log ν
ε

log ν log ν
εδ

) and

• S of size s = O( 1
ε2

(ν + log 1
δ
)).

Then with probability at least 1− δ,
Φ− ε ≤ Φn,s ≤ Φ + ε.

This theorem applies to our sample-then-scan algorithm
allrect over R, and algorithms moredisks and alldisks over D3.

Let η be the critical value for the original scan statistic
corresponding to a size |X| and significance level σ, then if

φ(m̂A, b̂A) > η + ε,

with probability at least 1− δ, we can reject the null hypoth-
esis at significance level σ. Or, the test on sample data S
has critical value η + ε with significance level σ(1− δ).

Alternatively, as we advocate in Algorithm 4.1, we can
estimate the critical value η for Φn,s directly (by sampling N
and S each permutation). This is a valid scan statistic test
and its power is well-defined, in particular at the σ = 0.05
significance level under the method we evaluate it.

6. CONCLUSIONS
We introduce the sample-then-scan method for scaling

spatial scan statistics to unlimited data sizes. We show
both empirically and analytically that these methods are
effective, efficient, and have high statistical power. Our
method of creating and analyzing nets of ranges to scan is
data adaptive, and we believe orthogonal to other efficient
branch-and-bound speed ups for these problems. We plan to
release a publicly available version of our code on github, and
also building a clean simple interface so many practitioners
can scale their analysis to much larger sizes.
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