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Problem Setup

Let X be a set of m points in Rd .

Let (X ,A) be a range space, defining a family subsets A of X .

Each data point can belong to an anomalous set

Find a range A ∈ A where the anomalous data is significantly
denser than the baseline data using some function Φ



Statistical Functions Φ

2 scalar values for each x ∈ X : b(x) and r(x).
For any A ∩ X , define B =

∑
x∈X b(x) and R =

∑
x∈X r(x) and

b(A) =
1

B

∑
x∈X∩A

b(x) and r(A) =
1

R

∑
x∈X∩A

r(x)

Define statistic Φ(A) as the log likelihood ratio

Φ(A) = log

(
Pr(H0|A,X )

Pr(H1|A,X )

)
I H0 : no anomaly, rate of measured points same inside as

outside.

I H1 : anomaly, A has a different rate of measured points inside
than outside.
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Existing Work

Many existing papers on these algorithms:

I Classic discrepancy maximization [BDT16, DE93]

I Subroutine in algorithms ranging from computer
graphics [DEM96] to association rules in data
mining [FMMT96]

I Minimum disagreement problem in machine learning [LM96].

I Scan Statistics [Kul97, Kul06, HKG07, NM04, APV06,
AMP+06, KHPD06, TT05](many many more)



Spatial Scan Statistics

Spatial Scan Statistics are heavily used to find spatial anomalies.
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Approximate Problem

Find an approximate range Â ∈ A such that Φ(A∗)− Φ(Â) < ε.

Existing approximation papers.

I [AMP+06] which introduced generic sampling bounds and a
bound on approximating scan statistics with linear functions.

I [MSZ+16] which showed that a two-stage random sampling
can provide some error guarantees.

I [Wal10] which showed approximation guarantees under the
Bernoulli model.



Approximate Problem

Find an approximate range Â ∈ A such that Φ(A∗)− Φ(Â) < ε.

For m = |X |
Known Exact Known Approx [MSZ+16] New Runtime Bounds

General Range Space O(mν+1) O
(
m + 1

εν+2 logν 1
ε

)
Halfspaces O(md ) [DEM96] – O

(
m + 1

εd+1/3
log2/3 1

ε

)
Disks O(m3) [DEM96] O(m + 1

ε4 log3 1
ε

) O
(
m + 1

ε3+1/3
log2/3 1

ε

)
Rectangles (Disc) O(m2) [BCNPL14] O(m + 1

ε4 log 1
ε

) [APV06] O(m + 1
ε2 log log 1

ε
)

Rectangles (sdf) O(m4) O(m + 1
ε4 log4 1

ε
) O

(
m + 1

ε2.5

)
Rectangles (Gen) O(m4) O(m + 1

ε4 log4 1
ε

)) O
(
m + 1

ε4

)
Algorithm times for (ε-approximately) maximizing different range spaces. Here dimension d , VC-dimension ν, and

probability of failure are all constants. For Rectangles (Disc) we show it takes Ω(m + 1/ε2) time, assuming
hardness of APSP.



Approximating φ

In some case linear φ functions are easier:

φ(r , b) = C1r + C2b

I Agarwal [AMP+06] showed can be ε-approximated with lower
envelope of O(1/ε log 1

ε ) linear functions.

I New result: only need O(1/
√
ε) linear functions

I In practice only need 3 to 4 linear functions.
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Approximating φ (cont)

Approximate φ with O(1/
√
ε) linear functions.

I If φ is a convex function then max lies on convex hull of:

VA,m,b = {(r(A), b(A)) | A ∈ A}

I Approximate convex hull of VA,r ,b by picking linear functions
in an iterative way.

I Size bound by Dudley’s approximation (ε-kernel)
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Approximate Rectangle Scanning

I Grid G over X so that each row and column has ≈ ε|X |
points.

I Each rectangle R ∈ (X ,R2) is approximated by a subgrid
RG ∈ G .

I Can enumerate all subgrids in O( 1
ε4 ) time and compute Φ on

each.(O(m + 1
ε4 ))
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I Grid G over X so that each row and column has ≈ ε|X |
points.

I Fix 1/ε upper end-points and sweep 1/ε lower end-points.

I Run Kadane’s algorithm for each upper and lower endpoint to
compute maximum horizontal subgrid in time O( 1
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ε3 ) time (max likelihood function in
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restricting to a grid.

I Most subgrids are very similar.
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Faster Approximate Rectangle Scanning

I Consider computing the max subgrid spanning a slab M.

I Divide upper subgrid into subgrids TT and TB and lower
subgrids into BT and BB .

I Decompose into 4 seperate problems.

I Idea inspired by [BCNPL14, Tak02, DEM96]



Faster Approximate Rectangle Scanning

Have to merge TB and/or merge BT into M.

1. Merge neither into M.

2. Merge TB into M.

3. Merge BT into M.

4. Merge TB and BT into M.



Faster Approximate Rectangle Scanning

Merging can be done in time proportional to non-zeros columns
(see paper for details).

I If Tb or Bb has k rows then can construct sparse grid with
O(k log 1

ε ) non zero columns that misplaces ε/ log 1
ε |X | points

with respect to vertical intervals.
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Faster Approximate Rectangle Scanning

I Have to construct a tree of sparse subgrids first.

I Error adds over log 1
ε levels in the recurrence leading to ε|X |

misplaced points.
I Total run time is O(m + 1

ε2 log 1
ε )

I O(m + 1
ε2 log 1

ε ) time to build grid.

I Takes O( 1
ε2 ) time to construct tree of sparse subgrids.

I Takes O( 1
ε2 log 1

ε ) to compute max slab spanning subgrid
approximately.

I log 1
ε can be made log log 1

ε with some work.

I New lower bound conditional on APSP of Ω(|X |+ 1
ε2 ).



Faster in Practice

Significant improvement in convergence

I SatScan is exact algorithm run on sample.

I gridScan is simple scanning over a grid.

I gridScan linear is Kadane based algorithm.

I Do not have an implementation of fastest algorithm.

0.1 0.2 0.3
time (s)

0.00

0.05

0.10

N
o
n
-L

in
e
a
r:

 Φ
(A

∗ )
−

Φ
(Â
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Other range spaces



2 Level Scanning

Why are exact algorithms slow on a Sample?



2 Level Scanning

Problem: Far too many combinatorial regions.
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2 Level Scanning

Compute φ using dense sample.



2 Level Scanning

Repeat procedure log 1
δ times and take median to amplify

probability of success.



2 Level Scanning

Procedure works on many different range spaces.
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Fast Scanning of Halfspaces

Dobkin and Eppstein [DE93] maximize (X ,H) of n points in Rd in
O(nd) time.

But need to count points in S .
Can annotate dual arrangement in O(n) time in R2 for each x ∈ S .



Faster with better coreset bounds?

S is usually of size O( 1
ε2 ) for constant d

I Halfspaces A = H in R2 then
|S | = s = O((1/ε)4/3)

I Balls A = B in R2 then
|S | = s = O((1/ε)4/3)

Provides further speedup.



Faster with better coreset bounds?

S is usually of size O( 1
ε2 ) for constant d

I Halfspaces A = H in R2 then
|S | = s = O((1/ε)4/3)

I Balls A = B in R2 then
|S | = s = O((1/ε)4/3)

Method exists for computing Halfspaces samples [MP18]:

I |S | = O((1/ε)2d/(d+1) logd/(d+1)(1/ε))

I Computable in O(n + 1
ε2 log 1

ε ) time.

Provides further speedup.



Summary

For m = |X |
Known Exact Known Approx [MSZ+16] New Runtime Bounds

General Range Space O(mν+1) O
(
m + 1

εν+2 logν 1
ε

)
Halfspaces O(md ) [DEM96] – O

(
m + 1

εd+1/3
log2/3 1

ε

)
Disks O(m3) [DEM96] O(m + 1

ε4 log3 1
ε

) O
(
m + 1

ε3+1/3
log2/3 1

ε

)
Rectangles (Disc) O(m2) [BCNPL14] O(m + 1

ε4 log 1
ε

) [APV06] O(m + 1
ε2 log log 1

ε
)

Rectangles (sdf) O(m4) O(m + 1
ε4 log4 1

ε
) O

(
m + 1

ε2.5

)
Rectangles (Gen) O(m4) O(m + 1

ε4 log4 1
ε

)) O
(
m + 1

ε4

)
Algorithm times for (ε-approximately) maximizing different range spaces. Here dimension d , VC-dimension ν, and

probability of failure are all constants. For Rectangles (Disc) we show it takes Ω(m + 1/ε2) time, assuming
hardness of APSP.

Any Questions?
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Evaluating Discrepancy

b(A) =
1

B

∑
x∈X∩A

b(x) and r(A) =
1

R

∑
x∈X∩A

r(x)

Let b(x) = −1 and m(x) = {0,+2}

φ(b, r) = |B(m(A) + b(A))|

Equivalent to discrepancy evaluation for a range space (X ,A) and
a coloring χ : X → {−1,+1}: Find

discχ(X ,A) = arg max
A∈A

∣∣∣∣∣ ∑
x∈X∩A

χ(x)

∣∣∣∣∣ .
If χ(x) = +1 then r(x) = 2 otherwise if χ(x) = −1 then r(x) = 0.
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