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Problem Setup

Let X be a set of n points in Rd .

Let (X ,A) be a range space with constant VC dimension, defining
a family of subsets A of X .

Then a subset S ⊆ X is an ε-sample if:∣∣∣ |X∩A|
|X | −

|S∩A|
|S|

∣∣∣ ≤ ε



Motivations

ε-samples can be used as a general preprocessing step for:

I Range searching.

I Spatial Anomalies.

I Discrepancy computation.

I Heat maps.



Motivations(cont)

Small ε-samples can be used to potentially speed up actual real
world problems such as spatial scan statistics!



Contructing ε-samples

Given a range space (X ,A) with VC dimension d then a random
sample S ⊆ X with probability 1− δ will be an ε-sample
[VC71, LLS01]

I |S | = O( 1
ε2 (d + log 1

δ )).

I O(m + 1
ε2 (d + log 1

δ )) time.



Sizes of ε-samples

Can do better than random sampling. There exists ε-samples of
size:

I Halfspaces |S | = Θ(1/ε2d/(d+1)) [Mat95].

I Rectangles |S | = Od(1/ε logd 1
ε ) [BG17].

I Balls |S | = O(1/ε2d/(d+1) logd/(d+1) 1
ε ) [MWW93].
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Halfspace ε-samples

At first proofs for smaller sized ε-samples for halfspaces were not
constructive [Mat09, Cha00].

I In 2010, Bansal [Ban10] introduced a polynomial time
coloring.
I Runtime of O(n(1/ε)2d(3d+2)/(d+1)polylog(1/ε)) [LM15]

using merge-reduce framework [CM96].

I Can be run on random sample in
O(n + (1/ε)2d(3d+2)/(d+1)+2polylog(1/ε)) time.

I When d = 2 is O(n + (1/ε)12+2/3polylog(1/ε))

I Other constructions with slightly worse size guarantees
[STZ04, BCEG07]
I Most require at least Ω(n + (1/ε2d/(d+1))d) time.

I Some methods with same guarantee as random sampling, but
work better in practice [HAM06]
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Halfspace ε-samples (cont)

We want a method with similar performance as random sampling’s
O(n + 1

ε2 ) time and similar size to the optimal Θ(1/ε2d/(d+1)).



Halfspace ε-samples (cont)

We want a method with similar performance as random sampling’s
O(n + 1

ε2 ) time and similar size to the optimal Θ(1/ε2d/(d+1)).

We present a simple method with

I |S | = O((1/ε)2d/(d+1) logd/(d+1)(1/ε))

I Computable in O(n + 1
ε2 log 1

ε ) time.

Experimental results.



Partition

A partition of (X ,Hd)

I Pairs {(∆1,X1), (∆2,X2), . . .}.
I Xi ⊆ ∆i ∩ X and Xi ∩ Xj = ∅.
I In a (t, z)-partition there are O(t)

pairs, |Xi | ≤ 2n/t; and each
h ∈ Hd crosses O(tz) cells.

I At best z = 1− 1/d
I z = .5 when d = 2
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Algorithm

I Points X .

I Construct partitioning
{(∆1,X1), (∆2,X2), . . .}.

I Sample a random point pi from Xi

and assign weight wi = |Xi |.
I Output is a weighted sample S .
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Algorithm

Partitioning of m points into t
partitions can be done in O(m log t)
time with z = 1− 1/d [Cha10].

I Running partitioning on a random
sample m = O( 1

ε2 ) with constant
probability.

I Time is O(n + 1
ε2 log 1

ε ).



Formal Statement

For range space (X ,Hd) with |X | = n and constant d , with
constant probability an ε-sample S of size O( 1

ε2d/(d+1) logd/(d+1) 1
ε )

can be constructed in O(n + 1
ε2 log 1

ε ) time.



Algorithm

I Points X .

I Construct partitioning
{(∆1,X1), (∆2,X2), . . .}.

I Sample a random point pi from Xi

and assign weight wi = |Xi |.
I Output is a weighted sample S .



Implementation Details

Several sampling algorithms in python for d = 2.

I Matousek’s efficient partition trees [Mat92], z = .5.
I Chan’s optimal partition trees [Cha10], z = .5.

I Full implementation, Chan.
I Simpler (less optimal) implementation, Chan Simple.

I Ham Tree Sample [Wil82] and Double Ham Tree [EW86] with
z = .792 and z = .695.

I Biased-L2 [HAM06]
I Does not rely on partitioning.
I Guarantee is no better than random sampling.



Implementation Details (cont)

From bottom to top:

I Line and point primitives.

I Line segments, wedges, and polygons.

I PolyTree to keep track of an arrangement [Sei91, HP00].

I Cuttings, approximate ham-sandwich cuts, and various queries
(intersection).

I Partitioning.
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Implementation Details (cont)

From bottom to top:

I Line and point primitives.

I Line segments, wedges, and polygons.

I PolyTree to keep track of an arrangement [Sei91, HP00].

I Cuttings, approximate ham-sandwich cuts, and various queries
(intersection).

I Partitioning.

2212000 2210000 2208000 2206000 2204000

404000

406000

408000

410000

412000



Experimental Setup

Evaluating the sampling.

I Took samples on Chicago crime data [Chi17] with 6.5 million
data points.

I Evaluate halfplane discrepancy on resulting sample S .
I Error(X ,S) = maxh∈Hd

| |S∩h|
|S| −

|X∩h|
|X | |.

I Vary sample size and compare with random sampling.



Experimental Results

We found that Biased-L2 [HAM06] was extremely slow.



Experimental Results

I Computation time increases roughly linearly with the input
size.

I Random sampling is much faster.
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Experimental Results

I Error remains relatively constant with input size.
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Experimental Results

I Time increases with output size in a roughly linear fashion.

I Chan has a much higher constant factor.
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Experimental Results

I All partitioning methods produce significantly smaller samples
than random sampling.

I Ham Tree Sample is by far the best even with its larger
z = .792.
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Applications

Use these sampling method for finding approximate discrepancy
(can also be used for scan statistics).

Figure: Philadelphia crime data for vehicular theft.



Faster with better coreset bounds?

Approximate discrepancy is computable in

O(n +
1

ε
|S | log

1

ε
+ T (n, |S |))

time, where |S | is the ε-sample size and T (n, k) its construction
time.

I Halfplane Scanning with Chan

O(n +
1

ε2+ 1
3

log1+ 2
3

1

ε
)

I Halfplane Scanning with random sampling

O(n +
1

ε3
log

1

ε
)



Runtimes
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Takeaways

I Best method
I Ham Tree Sample and Double Ham Tree work well in practice

and are simple to implement.
I Better theoretical methods could be useful at very large scales.
I Different methods can be composed.

I If the points are uniformly distributed then even a kd-tree will
give an optimal z = 1

2 partitioning [Mat94].

I This method can probably be used for polynomials by using
polynomial partitioning.
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