
Practical Low-Dimensional Halfspace Range
Space Sampling

Michael Matheny

with Jeff Phillips

School of Computing
University of Utah

December 13, 2018

Problem Setup

Let X be a set of n points in Rd .

Problem Setup

Let X be a set of n points in Rd .

Let (X ,A) be a range space with constant VC dimension, defining
a family of subsets A of X .

Problem Setup

Let X be a set of n points in Rd .

Let (X ,A) be a range space with constant VC dimension, defining
a family of subsets A of X .

Then a subset S ⊆ X is an ε-sample if:∣∣∣ |X∩A|
|X | −

|S∩A|
|S|

∣∣∣ ≤ ε

Motivations

ε-samples can be used as a general preprocessing step for:

I Range searching.

I Spatial Anomalies.

I Discrepancy computation.

I Heat maps.

Motivations(cont)

Small ε-samples can be used to potentially speed up actual real
world problems such as spatial scan statistics!

Contructing ε-samples

Given a range space (X ,A) with VC dimension d then a random
sample S ⊆ X with probability 1− δ will be an ε-sample
[VC71, LLS01]

I |S | = O(1
ε2 (d + log 1

δ)).

I O(m + 1
ε2 (d + log 1

δ)) time.

Sizes of ε-samples

Can do better than random sampling. There exists ε-samples of
size:

I Halfspaces |S | = Θ(1/ε2d/(d+1)) [Mat95].

I Rectangles |S | = Od(1/ε logd 1
ε) [BG17].

I Balls |S | = O(1/ε2d/(d+1) logd/(d+1) 1
ε) [MWW93].

Sizes of ε-samples

Can do better than random sampling. There exists ε-samples of
size:

I Halfspaces |S | = Θ(1/ε2d/(d+1)) [Mat95].

I Rectangles |S | = Od(1/ε logd 1
ε) [BG17].

I Balls |S | = O(1/ε2d/(d+1) logd/(d+1) 1
ε) [MWW93].

Halfspace ε-samples

At first proofs for smaller sized ε-samples for halfspaces were not
constructive [Mat09, Cha00].

I In 2010, Bansal [Ban10] introduced a polynomial time
coloring.
I Runtime of O(n(1/ε)2d(3d+2)/(d+1)polylog(1/ε)) [LM15]

using merge-reduce framework [CM96].

I Can be run on random sample in
O(n + (1/ε)2d(3d+2)/(d+1)+2polylog(1/ε)) time.

I When d = 2 is O(n + (1/ε)12+2/3polylog(1/ε))

I Other constructions with slightly worse size guarantees
[STZ04, BCEG07]
I Most require at least Ω(n + (1/ε2d/(d+1))d) time.

I Some methods with same guarantee as random sampling, but
work better in practice [HAM06]

Halfspace ε-samples

At first proofs for smaller sized ε-samples for halfspaces were not
constructive [Mat09, Cha00].

I In 2010, Bansal [Ban10] introduced a polynomial time
coloring.
I Runtime of O(n(1/ε)2d(3d+2)/(d+1)polylog(1/ε)) [LM15]

using merge-reduce framework [CM96].
I Can be run on random sample in

O(n + (1/ε)2d(3d+2)/(d+1)+2polylog(1/ε)) time.

I When d = 2 is O(n + (1/ε)12+2/3polylog(1/ε))

I Other constructions with slightly worse size guarantees
[STZ04, BCEG07]
I Most require at least Ω(n + (1/ε2d/(d+1))d) time.

I Some methods with same guarantee as random sampling, but
work better in practice [HAM06]

Halfspace ε-samples

At first proofs for smaller sized ε-samples for halfspaces were not
constructive [Mat09, Cha00].

I In 2010, Bansal [Ban10] introduced a polynomial time
coloring.
I Runtime of O(n(1/ε)2d(3d+2)/(d+1)polylog(1/ε)) [LM15]

using merge-reduce framework [CM96].
I Can be run on random sample in

O(n + (1/ε)2d(3d+2)/(d+1)+2polylog(1/ε)) time.
I When d = 2 is O(n + (1/ε)12+2/3polylog(1/ε))

I Other constructions with slightly worse size guarantees
[STZ04, BCEG07]
I Most require at least Ω(n + (1/ε2d/(d+1))d) time.

I Some methods with same guarantee as random sampling, but
work better in practice [HAM06]

Halfspace ε-samples

At first proofs for smaller sized ε-samples for halfspaces were not
constructive [Mat09, Cha00].

I In 2010, Bansal [Ban10] introduced a polynomial time
coloring.
I Runtime of O(n(1/ε)2d(3d+2)/(d+1)polylog(1/ε)) [LM15]

using merge-reduce framework [CM96].
I Can be run on random sample in

O(n + (1/ε)2d(3d+2)/(d+1)+2polylog(1/ε)) time.
I When d = 2 is O(n + (1/ε)12+2/3polylog(1/ε))

I Other constructions with slightly worse size guarantees
[STZ04, BCEG07]
I Most require at least Ω(n + (1/ε2d/(d+1))d) time.

I Some methods with same guarantee as random sampling, but
work better in practice [HAM06]

Halfspace ε-samples

At first proofs for smaller sized ε-samples for halfspaces were not
constructive [Mat09, Cha00].

I In 2010, Bansal [Ban10] introduced a polynomial time
coloring.
I Runtime of O(n(1/ε)2d(3d+2)/(d+1)polylog(1/ε)) [LM15]

using merge-reduce framework [CM96].
I Can be run on random sample in

O(n + (1/ε)2d(3d+2)/(d+1)+2polylog(1/ε)) time.
I When d = 2 is O(n + (1/ε)12+2/3polylog(1/ε))

I Other constructions with slightly worse size guarantees
[STZ04, BCEG07]
I Most require at least Ω(n + (1/ε2d/(d+1))d) time.

I Some methods with same guarantee as random sampling, but
work better in practice [HAM06]

Halfspace ε-samples (cont)

We want a method with similar performance as random sampling’s
O(n + 1

ε2) time and similar size to the optimal Θ(1/ε2d/(d+1)).

Halfspace ε-samples (cont)

We want a method with similar performance as random sampling’s
O(n + 1

ε2) time and similar size to the optimal Θ(1/ε2d/(d+1)).

We present a simple method with

I |S | = O((1/ε)2d/(d+1) logd/(d+1)(1/ε))

I Computable in O(n + 1
ε2 log 1

ε) time.

Experimental results.

Partition

A partition of (X ,Hd)

I Pairs {(∆1,X1), (∆2,X2), . . .}.
I Xi ⊆ ∆i ∩ X and Xi ∩ Xj = ∅.
I In a (t, z)-partition there are O(t)

pairs, |Xi | ≤ 2n/t; and each
h ∈ Hd crosses O(tz) cells.

I At best z = 1− 1/d
I z = .5 when d = 2

Partition

A partition of (X ,Hd)

I Pairs {(∆1,X1), (∆2,X2), . . .}.
I Xi ⊆ ∆i ∩ X and Xi ∩ Xj = ∅.
I In a (t, z)-partition there are O(t)

pairs, |Xi | ≤ 2n/t; and each
h ∈ Hd crosses O(tz) cells.

I At best z = 1− 1/d
I z = .5 when d = 2

Algorithm

I Points X .

I Construct partitioning
{(∆1,X1), (∆2,X2), . . .}.

I Sample a random point pi from Xi

and assign weight wi = |Xi |.
I Output is a weighted sample S .

Algorithm

I Points X .

I Construct partitioning
{(∆1,X1), (∆2,X2), . . .}.

I Sample a random point pi from Xi

and assign weight wi = |Xi |.
I Output is a weighted sample S .

Algorithm

I Points X .

I Construct partitioning
{(∆1,X1), (∆2,X2), . . .}.

I Sample a random point pi from Xi

and assign weight wi = |Xi |.

I Output is a weighted sample S .

Algorithm

I Points X .

I Construct partitioning
{(∆1,X1), (∆2,X2), . . .}.

I Sample a random point pi from Xi

and assign weight wi = |Xi |.
I Output is a weighted sample S .

Algorithm

Partitioning of m points into t
partitions can be done in O(m log t)
time with z = 1− 1/d [Cha10].

I Running partitioning on a random
sample m = O(1

ε2) with constant
probability.

I Time is O(n + 1
ε2 log 1

ε).

Formal Statement

For range space (X ,Hd) with |X | = n and constant d , with
constant probability an ε-sample S of size O(1

ε2d/(d+1) logd/(d+1) 1
ε)

can be constructed in O(n + 1
ε2 log 1

ε) time.

Algorithm

I Points X .

I Construct partitioning
{(∆1,X1), (∆2,X2), . . .}.

I Sample a random point pi from Xi

and assign weight wi = |Xi |.
I Output is a weighted sample S .

Implementation Details

Several sampling algorithms in python for d = 2.

I Matousek’s efficient partition trees [Mat92], z = .5.
I Chan’s optimal partition trees [Cha10], z = .5.

I Full implementation, Chan.
I Simpler (less optimal) implementation, Chan Simple.

I Ham Tree Sample [Wil82] and Double Ham Tree [EW86] with
z = .792 and z = .695.

I Biased-L2 [HAM06]
I Does not rely on partitioning.
I Guarantee is no better than random sampling.

Implementation Details (cont)

From bottom to top:

I Line and point primitives.

I Line segments, wedges, and polygons.

I PolyTree to keep track of an arrangement [Sei91, HP00].

I Cuttings, approximate ham-sandwich cuts, and various queries
(intersection).

I Partitioning.

Implementation Details (cont)

From bottom to top:

I Line and point primitives.

I Line segments, wedges, and polygons.

I PolyTree to keep track of an arrangement [Sei91, HP00].

I Cuttings, approximate ham-sandwich cuts, and various queries
(intersection).

I Partitioning.

Implementation Details (cont)

From bottom to top:

I Line and point primitives.

I Line segments, wedges, and polygons.

I PolyTree to keep track of an arrangement [Sei91, HP00].

I Cuttings, approximate ham-sandwich cuts, and various queries
(intersection).

I Partitioning.

Implementation Details (cont)

From bottom to top:

I Line and point primitives.

I Line segments, wedges, and polygons.

I PolyTree to keep track of an arrangement [Sei91, HP00].

I Cuttings, approximate ham-sandwich cuts, and various queries
(intersection).

I Partitioning.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Implementation Details (cont)

From bottom to top:

I Line and point primitives.

I Line segments, wedges, and polygons.

I PolyTree to keep track of an arrangement [Sei91, HP00].

I Cuttings, approximate ham-sandwich cuts, and various queries
(intersection).

I Partitioning.

2212000 2210000 2208000 2206000 2204000

404000

406000

408000

410000

412000

Experimental Setup

Evaluating the sampling.

I Took samples on Chicago crime data [Chi17] with 6.5 million
data points.

I Evaluate halfplane discrepancy on resulting sample S .
I Error(X ,S) = maxh∈Hd

| |S∩h|
|S| −

|X∩h|
|X | |.

I Vary sample size and compare with random sampling.

Experimental Results

We found that Biased-L2 [HAM06] was extremely slow.

Experimental Results

I Computation time increases roughly linearly with the input
size.

I Random sampling is much faster.

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Input Size

0

1

2

3

4

T
im

e
 (

se
c)

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

Experimental Results

I Error remains relatively constant with input size.

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Input Size

0.00

0.02

0.04

0.06

0.08

0.10

E
rr

o
r

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

Experimental Results

I Time increases with output size in a roughly linear fashion.

I Chan has a much higher constant factor.

500 1000 1500 2000
Output Size

0

2

4

6

8

10

12

14

T
im

e
 (

se
c)

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

Experimental Results

I All partitioning methods produce significantly smaller samples
than random sampling.

I Ham Tree Sample is by far the best even with its larger
z = .792.

500 1000 1500 2000
Output Size

10-2

10-1

E
rr

o
r

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

Applications

Use these sampling method for finding approximate discrepancy
(can also be used for scan statistics).

Figure: Philadelphia crime data for vehicular theft.

Faster with better coreset bounds?

Approximate discrepancy is computable in

O(n +
1

ε
|S | log

1

ε
+ T (n, |S |))

time, where |S | is the ε-sample size and T (n, k) its construction
time.

I Halfplane Scanning with Chan

O(n +
1

ε2+ 1
3

log1+ 2
3

1

ε
)

I Halfplane Scanning with random sampling

O(n +
1

ε3
log

1

ε
)

Runtimes

10 0.5 100.0 100.5 101.0 101.5 102.0

Time (sec)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Di
sc

re
pa

nc
y

Er
ro

r

Chan
Chan Simple
Mat Poly Points
Random Sample
Ham Tree Sample

Takeaways

I Best method
I Ham Tree Sample and Double Ham Tree work well in practice

and are simple to implement.
I Better theoretical methods could be useful at very large scales.
I Different methods can be composed.

I If the points are uniformly distributed then even a kd-tree will
give an optimal z = 1

2 partitioning [Mat94].

I This method can probably be used for polynomials by using
polynomial partitioning.

For Further Reading I

Nikhil Bansal, Constructive algorithms for discrepancy minimization,
Proceedings 51st Annual IEEE Symposium on Foundations of Computer
Science, 2010, pp. 407–414.

Amitabha Bagchi, Amitabh Chaudhary, David Eppstein, and Michael T.
Goodrich, Deterministic sampling and range counting in geometric data
streams, ACM Transactions on Algorithms 3 (2007), no. A16.

Nikhil Bansal and Shashwat Garg, Algorithmic discrepancy beyond partial
coloring, Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (New York, NY, USA), STOC 2017, ACM, 2017,
pp. 914–926.

Bernard Chazelle, The discrepancy method, Cambridge, 2000.

Timothy M. Chan, Optimal partition trees, In: Proc. 26th Annu. ACM
Sympos. Comput. Geom, 2010, pp. 1–10.

Crimes in Chicago,
https://www.kaggle.com/currie32/crimes-in-chicago, 2017.

https://www.kaggle.com/currie32/crimes-in-chicago

For Further Reading II

Bernard Chazelle and Jiri Matousek, On linear-time deterministic
algorithms for optimization problems in fixed dimensions, Journal of
Algorithms 21 (1996), 579–597.

Herbert Edelsbrunner and Emo Welzl, Halfplanar range search in linear
space and o(n0.695) query time, Information Processing Letters 23
(1986), no. 5, 289 – 293.

Herve Bronnimann Huseyin Akcan and Robert Marini, Practical and
efficient geometric ε-approximations, Proceedings of the 18th Canadian
Conference on Computational Geometry (2006), 120 – 125.

S. Har-Peled, Constructing planar cuttings in theory and practice, SIAM J.
Comput. 29 (2000), no. 6, 2016–2039.

Yi Li, Philip M. Long, and Aravind Srinivasan, Improved bounds on the
samples complexity of learning, J. Comp. and Sys. Sci. 62 (2001),
516–527.

Sachar Lovett and Raghu Meka, Constructive discrepancy minimization by
walking on the edges, SIAM Journal on Computing 44 (2015), 1573–1582.

For Further Reading III

Jiri Matousek, Efficient partition trees, Discrete & Computational
Geometry 8 (1992), 315–334.

, Geometric range searching, ACM Comput. Surv. 26 (1994),
no. 4, 422–461.

, Tight upper bounds for the discrepancy of halfspaces, Discrete
and Computational Geometry 13 (1995), 593–601.

, Geometric discrepancy, Springer, 2009.

Jiri Matousek, Emo Welzl, and Lorenz Wernisch, Discrepancy and
approximations for bounded VC-dimension, Combinatorica 13 (1993),
455–466.

Raimund Seidel, A simple and fast incremental randomized algorithm for
computing trapezoidal decompositions and for triangulating polygons,
Computational Geometry 1 (1991), 51 – 64.

Subhash Suri, Csaba D. Tóth, and Yunhong Zhou, Range counting over
multidimensional data streams, Proceedings 20th Symposium on
Computational Geometry, 2004, pp. 160–169.

For Further Reading IV

Vladimir Vapnik and Alexey Chervonenkis, On the uniform convergence of
relative frequencies of events to their probabilities, Theo. of Prob and App
16 (1971), 264–280.

D. E. Willard, Polygon retrieval, SIAM Journal of Computing (11, ed.),
1982, pp. 149–165.

